

rq: Datalog for your Shell Pipelines

Charles Daniels
September 14, 2022

About Me – Charles Daniels
● Computer Engineering B.S.E. – UofSC 2019
● Computer Science M.S. - UofSC 2021
● Backend Software Engineer – Styra Inc.

All views and opinions expressed are my own,
and do not represent those of Styra. rq is not
supported or endorsed by Styra.

Background: What is OPA
● Open Policy Agent (OPA) is a CNCF-graduated open-source

runtime for policy-as-code
● Policies are written in a Datalog-based DSL: Rego
● Rego allows expressing arbitrary transforms over JSON

documents
● Try it in your browser: https://play.openpolicyagent.org/

Enter rq
● Problem: OPA has limited ability to use Rego in shell

contexts
● rq (“Rego Query”) embeds OPA as a library, allows using

Rego from pipelines and scripts
● Adds additional builtins to support this use case, as well as

adapters for popular formats (CSV, JSON, YAML, TOML)
● https://git.sr.ht/~charles/rq

Sample Data (books.json)
[

 {

 "title": "Writing An Interpreter In Go",

 "authors": ["Thorsten Ball"],

 "isbn": "978-3982016115",

 "year": 2018

 },

 {

 "title": "Writing A Compiler In Go",

 "authors": ["Thorsten Ball"],

 "isbn": "978-3982016108",

 "year": 2018

 },

 {

 "title": "The Go Programming Language",

 "authors": ["Alan A. A. Donovan", "Brian W. Kernighan"],

 "isbn": "978-0134190440",

 "year": 2015

 },

 {

 "title": "Hands-On GUI Application Development in Go",

 "authors": ["Andrew Williams"],

 "isbn": "978-1789138412",

 "year": 2019

 },

 {

 "title": "Building Cross-Platform GUI Applications with Fyne",

 "authors": ["Andrew Williams"],

 "isbn": "1800563167",

 "year": 2021

 }

]

Some Basic Interactions with rq (1/3)
$ rq 'input[0]' < books.json
{
 "authors": [
 "Thorsten Ball"
],
 "isbn": "978-3982016115",
 "title": "Writing An Interpreter In Go",
 "year": 2018
}

Some Basic Interactions with rq (2/3)
$ rq 'input[0].title' < books.json

"Writing An Interpreter In Go"

$ rq 'object.filter(input[0], ["title", "year"])' < books.json

{

 "title": "Writing An Interpreter In Go",

 "year": 2018

}

Some Basic Interactions with rq (3/3)
$ rq '{b.title | b := input[_]; b.year > 2018}' < books.json

[

 "Building Cross-Platform GUI Applications with Fyne",

 "Hands-On GUI Application Development in Go"

]

$ rq '{b.title | b := input[_]; count(b.authors) > 1}' < books.json

[

 "The Go Programming Language"

]

Scripting With rq
#!/usr/bin/env rq

rq: data-paths ./books.json
rq: query data.script.output
rq: output-format csv
rq: silent-query data.script.check_args

args := rq.args()

author_search := args[0]

check_args {
count(args) != 1
rq.error("usage: byauthor.rego AUTHOR_FRAGMENT")

}

output := {
object.filter(b, ["title", "isbn", "year"])
|
b := data.books[_]
contains(lower(b.authors[_]), lower(author_search))

}

$./byauthor.rego andrew
isbn,title,year
1800563167,Building Cross-Platform GUI Applications with Fyne,2021
978-1789138412,Hands-On GUI Application Development in Go,2019

… and so Much More!
● This is just a few samples of what rq can do
● More features not shown

– Syntax highlighted output
– rq.run()
– rq.env()
– --data
– … and others

End.
● Questions?

Further Reading
● OPA – Policy Language

– https://www.openpolicyagent.org/docs/latest/policy-language/
● OPA – Policy Reference

– https://www.openpolicyagent.org/docs/latest/policy-reference/
● Styra Academy (free, requires signup)

– https://academy.styra.com/
● rq Documentation

– https://git.sr.ht/~charles/rq/tree/master/item/doc/README.md
● rq Repository

– https://git.sr.ht/~charles/rq

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

