
Introduction to Python

Charles Daniels

September 17, 2020

Introduction
Who Am I?

• Charles Daniels
• PhD CS student
• HeRC research group
• B.S.E in Computer Engineering from USC
• TA for 313, 317, 611

Why Learn Python?
• Easy to write

– Much less boilerplate than Java
– No need for manual memory management like C/C++

• Popular
– Widely used in scientific computing and industry

• Huge, mature library ecosystem
– Numpy/Scipy
– Matplotlib
– PIL
– many, many more

How Do I Use Python?
I use Python all the time in my work as a graduate student. . .

• Data processing scripts
– Convert from one format to another
– Summarize or gather statistics

• Create figures
• Automate other programs
• Create prototypes for systems to be lowered to C/hardware later

1

https://cse.sc.edu/~jbakos/group/

Python Essentials
• Interpreted, not compiled
• Duck-typed
• Object-oriented
• Garbage-collected

The Basics
Want to Follow Along?

• Just open a terminal and run python3
• Or use repl.it
• Or use ipython3 if you feel fancy

Syntax - Variables
Python syntax is different from C and Java. . .

assign a new variable x
x = 7
y = 3
print x^y
print("{} to the power of {}={}".format(x, y, x**y))

Output:

7 to the power of 3=343

Syntax – Loops
x = 2
while x > 0:

print("x is ", x)
x -= 1

for y in range(0, 3):
print("y is ", y)

Output:

x is 2

x is 1

y is 0

y is 1

y is 2

2

https://repl.it/

Syntax – Functions
Defining a function. . .

def doubleit(x):
return x * 2

here, message has a default value
def sayit(x, message="value is: "):

print(message, x)

print("doubleit(3)=", doubleit(3))
sayit(5)
sayit(5, "different message!")

Output:

doubleit(3)= 6

value is: 5

different message! 5

Syntax – Classes 1
Defining a class. . .

class Dog:
__init__ is the constructor, the first argument
doesn't *have* to be "this", this is just a
convention ("self" is also popular)
#
__init__ is defined like any other function, this
time we use default values
def __init__(this, fleas=5, greeting="bark"):

this.fleas = fleas
this.greeting = greeting

def bark(this):
print(this.greeting)

Syntax – Classes 2
Using our class. . .

fido = Dog()
single quotes are also allowed for strings
spot = Dog(3, 'woof')
doge = Dog(greeting="wow, such class, very types")

3

create a list with the dogs in it
dogs = [fido, spot, doge]

loop over it
for dog in dogs:

dog.bark()

Output:

bark

woof

wow, such class, very types

Imports
Some functions, such as sin() are in modules which we must import before we
can use them. sin() lives in the math module.

import math

print("pi = ", math.pi)
print("sin(1.5*pi) = ", math.sin(1.5*math.pi))

we can also import specific items from a module
from math import sin
print("sin(2.5*pi) = ", sin(2.5*math.pi))

Output:

pi = 3.141592653589793

sin(1.5*pi) = -1.0

sin(2.5*pi) = 1.0

Duck Typing
class Duck:

def quack(this):
print("Quack quack!")

class Goose:
def quack(this):

print("Hong honk!")

duck = Duck()
goose = Goose()

4

for bird in [duck, goose]:
bird.quack()

Output:

Quack quack!

Hong honk!

Input – File

open example.txt for reading, the "with" will
cause the file to be closed automatically when we
reach the end of the "with" block, so we don't
have to call f.close()
with open("example.txt", "r") as f:

lineno = 0
for line in f:

print("line", lineno, "is", line)
lineno += 1

Output:

line 0 is line 1

line 1 is line two

line 2 is this is the third line

Input – Standard In
This example shows how to loop over all the lines of standard input. . .

import sys

lineno = 0
for line in sys.stdin:

print("line", lineno, "is", line)
lineno += 1

Output – File
with open("output.txt", "w") as f:

for i in range(5):
f.write("line #{}\n".format(i))

with open("output.txt", "r") as f:
for line in f:

print(line)

5

Output:

line #0

line #1

line #2

line #3

line #4

Getting Fancy
List Comprehensions (Map)
For a list L, apply a function f to each item, creating a new list L′ such that
L′[i] = f(L[i])∀i.

numbers = [1, 2, 3, 4]
squared = [x*x for x in numbers]
print("squared=", squared)

convert a string to a list of it's ASCII codes
s = "Hello!"
print("characters=", [ord(c) for c in s])

Output:

squared= [1, 4, 9, 16]

characters= [72, 101, 108, 108, 111, 33]

Setting up to Plot
Code taken from matplotlib.org.

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

Data for plotting
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)

Plot the Data
fig, ax = plt.subplots()

ax.plot(t, s)

6

https://matplotlib.org/3.2.1/gallery/lines_bars_and_markers/simple_plot.html

ax.set(xlabel='time (s)', ylabel='voltage (mV)',
title='About as simple as it gets, folks')

ax.grid()

un-comment to save out to a file
fig.savefig("test.png")

un-comment to show GUI plot window
plt.show()

The Result. . .

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

vo
lta

ge
 (m

V)

About as simple as it gets, folks

Attributes Aren’t Pre-Declared
Remember our class Dog from earlier? This technique is great for annotating
objects you didn’t instantiate (but be careful to avoid name collisions)

fido = Dog()
fido.name = "Fido"
fido.bark()
print(fido.name)

Output:

bark

7

Fido

What Next?
Libraries

• Numerical computing
– NumPy
– SciPy

• Plots
– matplotlib

• GUIs
– tkinter

∗ shameless plug
• Argument Parsing

– argarse

How to Install Them
• pip will let you install Python modules from the internet.

– Official docs on python.org

• Search packages: pip3 search searchterm

• Install a package pip3 install --user packagename

– Don’t install globally with sudo pip install unless you know what
you are doing.

• Find packages on pypi.org.

– Also try awesome-python.com

Questions?
End.
Thanks

• This slideshow was written using pandoc with caiofcm/filter_pandoc_run_py
used to execute in-line Python code and embed the output.

• Thanks to Josh for copyediting.

8

https://numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://docs.python.org/3.7/library/tkinter.html
http://cdaniels.net/talks.html#py3_tk
https://docs.python.org/3.7/library/argparse.html
https://packaging.python.org/tutorials/installing-packages/
https://pypi.org/
https://awesome-python.com/
https://github.com/caiofcm/filter_pandoc_run_py

	Introduction
	Who Am I?
	Why Learn Python?
	How Do I Use Python?
	Python Essentials

	The Basics
	Want to Follow Along?
	Syntax - Variables
	Syntax – Loops
	Syntax – Functions
	Syntax – Classes 1
	Syntax – Classes 2
	Imports
	Duck Typing
	Input – File
	Input – Standard In
	Output – File

	Getting Fancy
	List Comprehensions (Map)
	Setting up to Plot
	Plot the Data
	The Result…
	Attributes Aren't Pre-Declared

	What Next?
	Libraries
	How to Install Them
	Questions?
	End.
	Thanks

